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Abstract— We consider the output synchronization problem
for a heterogeneous network of linear agents. The agents are
non-introspective, meaning that they do not have access to
their own state or output; the only information available to
each agent comes from the network, in the form of a linear
combination of its output relative to that of neighboring agents.
The basis for our study is a design previously presented by
the authors, which was based on an additional assumption
requiring the agents to be right-invertible. Here we dispense
with the assumption of right-invertibility and instead introduce
a new assumption based on solvability of a particular set of
regulator equations.

I. INTRODUCTION

In recent years, a substantial amount of attention has been
given to the synchronization problem, which involves making
a network of agents agree asymptotically on their state or
output trajectories. The challenge of this problem lies in
the limited amount of information available to each agent—
typically, a linear combination of its state or output relative
to that of neighboring agents.

Much of the attention has been directed toward the prob-
lem of state synchronization in homogeneous networks—
that is, networks where the agent models are identical—with
each agent receiving information about its own state relative
to that of neighboring agents [1]–[6]. Roy, Saberi, and
Herlugson [7] and Yang, Roy, Wan, and Saberi [8] considered
this type of problem for more general network topologies.
Others have studied the case where the agents receive relative
information about their own partial-state output [9]–[13]. In
this context, Li, Duan, Chen, and Huang [12] introduced the
idea of a distributed observer, which makes additional use of
the network by allowing the agents to exchange information
with their neighbors about their own internal estimates. Many
of the results on the synchronization problem are rooted in
the seminal work of Wu and Chua [14], [15].

A limited amount of research has also been conducted on
heterogeneous networks—that is, networks where the agent
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models are non-identical [16]–[18]. In this case, the physical
interpretation of one agent’s internal state may be different
from that of another agent, and it is often more meaningful to
aim for output synchronization—that is, agreement on some
partial-state output from each agent [19]–[23].

The heterogeneous designs mentioned above rely—
explicitly or implicitly—on some sort of self-knowledge
that is separate from the information transmitted over the
network. In particular, the agents may be required to know
their own state, their own output, or their own state/output
relative to that of a reference trajectory. In recent papers [24],
[25], the authors have introduced the term introspective agent
to refer to agents that possess this type of self-knowledge,
and focused instead on non-introspective agents—that is,
agents that receive no information independent from the
network. To the best of the authors’ knowledge, the only
work besides that of Grip, Yang, Saberi, and Stoorvogel
[24], [25] that clearly applies to a well-defined class of
heterogeneous networks with non-introspective agents is by
Zhao, Hill, and Liu [26]. In their work, the only information
available to each agent is a linear combination of outputs
received over the network, but the agents are assumed to be
passive.

A. Right-Invertibility

The networks considered by Grip et al. [24], [25] consist
of n agents governed by models on the form

ẋi = Aixi +Biui, yi =Cixi +Diui, (1)

where xi ∈ Rni , ui ∈ Rmi , and yi ∈ Rp. Controllers are
designed to achieve output synchronization—that is, (yi−
y j)→ 0 for all i, j ∈ {1, . . . ,n}—under a set of assumptions
about the network topology and the agents’ dynamics. The
most restrictive of these assumptions requires the dynamics
between ui and yi, described by the quadruple (Ai,Bi,Ci,Di),
to be right-invertible.

Right-invertibility means that, given a reference output
ȳ(t) for t ≥ 0, there exist an initial condition xi(0) and an
input ui(t) for t ≥ 0 such that yi(t) = ȳ(t) for all t ≥ 0. A
necessary (but not sufficient) condition for right-invertibility
is that the dimension of the input ui must be at least as large
as the dimension of the output yi, which is clearly restrictive.

B. Contribution of This Paper

In this paper we consider the output synchronization
problem for heterogeneous networks of non-introspective
agents using the same design approach as before [24], [25].
However, we dispense with the condition of right-invertibility



by instead making an assumption regarding the solvability
of a particular set of regulator equations. This allows us to
achieve output synchronization for a large class of networks
that could not previously be handled, and for which no
design methodology exists in the current literature. We
demonstrate this through a simulation example that includes
ten agents with four different models, none of which are
right-invertible. After this we investigate the implications of
our new assumption in detail, to show that, even though
right-invertibility is not required, solvability of the regulator
equations is intrinsically tied to the properties of the non-
right-invertible dynamics of each agent.

II. PROBLEM FORMULATION

We consider a network of n agents on the form (1).
The agents are non-introspective, meaning that agent i does
not have access to its own output yi. The only available
information comes from the network, which provides each
agent with a linear combination of its own output relative to
that of the other agents. In particular, agent i has access to
the quantity

ζi =
n

∑
j=1

ai j(yi− y j),

where ai j ≥ 0 and aii = 0. The network can be described by a
directed graph (digraph) G with nodes corresponding to the
agents in the network and edges given by the coefficients ai j.
In particular, ai j > 0 implies that an edge exists from agent
j to i. Agent j is then called a parent of agent i, and agent
i is called a child of agent j. The weight of the edge equals
the magnitude of ai j.

We shall make use of the matrix G = [gi j], where gii =

∑
n
j=1 ai j and gi j = −ai j for j 6= i. This matrix is known as

the Laplacian matrix of the digraph G and has the property
that the sum of the coefficients on each row is equal to zero.
In terms of the coefficients of G, ζi can be rewritten as ζi =

∑
n
j=1 gi jy j.
In addition to ζi, we assume that the agents can exchange

information about their internal estimates using the same
network. Specifically, agent i is presumed to have access to
the quantity

ζ̂i =
n

∑
j=1

ai j(ηi−η j) =
n

∑
j=1

gi jη j,

where η j ∈ Rp is a variable produced by agent j as part
of the agreement protocol. This variable will be specified as
part of the protocol design.

III. PROTOCOL DESIGN

To facilitate our design, we first make the following
assumption.

Assumption 1: The digraph G has a directed spanning
tree with root agent K ∈ {1, . . . ,n}, such that for each i ∈
{1, . . . ,n} \K, (Ai,Bi) is stabilizable and (Ai,Ci) is observ-
able.

Remark 1: A directed tree is a directed subgraph of G ,
consisting of a subset of the nodes and edges, such that every

node has exactly one parent, except a single root node with
no parents. Furthermore, there must exist a directed path
from the root to every other agent. A directed spanning tree
is a directed tree that contains all the nodes of G . A digraph
may contain many directed spanning trees, and thus there
may be several choices of root agent K.

In addition to Assumption 1, we need an assumption about
the solvability of a particular set of regulator equations for
each agent i ∈ {1, . . . ,n}\K. Because this assumption relies
on a preliminary state transformation carried out during the
design, we shall state it below as part of the design procedure.

The main idea behind the design is to let agent K operate
autonomously by setting uK = 0, and to also set ηK = 0.
Controllers are then designed for all the other agents to make
their outputs asymptotically synchronize with the trajectory
yK(t). Thus, for each i ∈ {1, . . . ,n} \K, the objective is to
regulate the synchronization error variable ei := yi− yK to
zero. The controller design for each agent i ∈ {1, . . . ,n}\K
is described in the following section. The information needed
by each agent in order to carry out this design is
• the matrices AK and CK
• a number n∗ that is a bound on the order of any agent

i ∈ {1, . . . ,n}\K
• a number τ > 0 that is a lower bound on the real part of

the eigenvalues of Ḡ, where Ḡ is obtained by removing
the K’th row and column from the Laplacian matrix G

• a common high-gain parameter ε ∈ (0,1]
Remark 2: Since G has a directed spanning tree, the

eigenvalues of Ḡ all have strictly positive real parts [25,
Lemma 4].

Remark 3: Without loss of generality, we can assume that
(AK ,CK) is observable and that all the eigenvalues of AK are
in the closed right-half complex plane (see [25] for details).

A. Design Procedure for Agent i ∈ {1, . . . ,n}\K

Define

Oi =

 Ci −CK
...

...
CiA

ni+nK−1
i −CKAni+nK−1

K

 . (2)

Let qi denote the dimension of the null space of Oi, and
define ri = nK − qi. Next, define Λiu ∈ Rni×qi and Φiu ∈
RnK×qi such that Oi

[
Λiu
Φiu

]
= 0 and rank

[
Λiu
Φiu

]
= qi. It is easy

to show that Λiu and Φiu have full column rank (see [25]).
Let Λio and Φio be defined such that Λi := [Λiu,Λio]∈Rni×ni

and Φi := [Φiu,Φio] ∈ RnK×nK are nonsingular.
Define a new state variable x̄i ∈ Rni+ri as

x̄i =

[
xi−ΛiMiΦ

−1
i xK

−NiΦ
−1
i xK

]
, (3)

where Mi =
[

Iqi 0
0 0

]
∈ Rni×nK and Ni = [0 Iri ] ∈ Rri×nK .

From [25, Lemma 2], the synchronization error variable
ei is then governed by the equations

˙̄xi = Āix̄i + B̄iui :=
[

Ai Āi12
0 Āi22

]
x̄i +

[
Bi
0

]
ui, (4a)



ei = C̄ix̄i + D̄iui :=
[
Ci −C̄i2

]
x̄i +Diui, (4b)

where (Āi,C̄i) is observable and the eigenvalues of Āi22 are
a subset of the eigenvalues of AK . We can now state our
additional assumption.

Assumption 2: There exist Πi and Γi that solve the regu-
lator equations

ΠiĀi22 = AiΠi + Āi12 +BiΓi, (5a)
CiΠi−C̄i2 +DiΓi = 0. (5b)

Continuing the design, define n̄ = n∗+ nK and χi = Tix̄i,
where Ti = [C̄′i , . . . ,(C̄iĀn̄−1

i )′]′. The matrix Ti is injective, and
hence T ′i Ti is invertible. In terms of the new state χi, we can
write the system equations as

χ̇i = (A +Li)χi +Biui, ei = C χi +Diui, (6)

where

A =

[
0 Ip(n̄−1)
0 0

]
, C =

[
Ip 0

]
,

Li =

[
0
Li

]
, Bi = Ti

[
Bi
0

]
, Di = Di,

for a matrix Li ∈Rp×n̄p [25]. Let P =P ′ > 0 be the unique
solution of the algebraic Riccati equation

A P +PA ′−2τPC ′C P + In̄p = 0, (7)

and construct the observer

˙̂χi = (A +Li)χ̂i +Biui +S(ε)PC ′(ζi− ζ̂i), (8a)
ˆ̄xi = (T ′i Ti)

−1T ′i χ̂i, (8b)

where S(ε) = blkdiag(Ipε−1, . . . , Ipε−n̄) for a parameter ε ∈
(0,1]. Finally, define ui = [Fi,Γi−FiΠi] ˆ̄xi, where Fi is chosen
such that Ai+BiFi is Hurwitz and Πi and Γi are solutions of
the regulator equations (5), and define ηi = C χ̂i +Diui.

The main result for this design can be summarized as
follows.

Theorem 1: Suppose that Assumption 1 holds and that
Assumption 2 holds for each i ∈ {1, . . . ,n}\K. There exists
an ε∗ ∈ (0,1] such that, if ε ∈ (0,ε∗], i ∈ {1, . . . ,n}\K, then
output synchronization is achieved.

Proof: The agreement protocol is the same as in our
previous work [24], even though it is facilitated by different
assumptions. Hence, the theorem follows trivially from our
previous results.

In the remainder of this paper it will be useful to have
a good understanding of the first step of the design pro-
cedure, which involves a state transformation in order to
describe ei by (4). The purpose of this step is to reduce
the dimension of the model underlying ei by removing any
redundant dynamics—specifically, dynamics in agent K that
are contained within agent i. The pair (Āi22,C̄i2) contains
“what is left” after this reduction—that is, the dynamics of
agent K that is not contained within agent i. To be more
precise, we can state the following proposition.

Proposition 1: For some subspace Si⊂RnK of dimension
`i, suppose that for each initial condition xK(0) ∈Si, there
is an initial condition xi(0) ∈ Rni such that, for uK = 0 and
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Fig. 1. Network graph

ui = 0, yi(t) = yK(t) for all t ≥ 0. Then ri ≤ nK − `i, where
ri is the dimension of the pair (Āi22,C̄i2).

Proof: For any initial condition xK(0) ∈Si, we have
ei = 0 for some initial condition xi(0) if uK = 0 and ui = 0.
It follows that these initial conditions are indistinguishable
from the output ei of the system ẋi = Aixi, ẋK = AKxK ,
ei =Cixi−CKxK , and hence this system has an unobservable
subspace of dimension greater than or equal to `i. The
observability matrix of this system is Oi, and hence qi ≥
`i =⇒ ri ≤ nK− `i.

An immediate implication of Proposition 1 is that, if all
open-loop solutions of agent K can be replicated by open-
loop solutions of agent i, then (Āi22,C̄i2) is of dimension
zero.

IV. EXAMPLE

In this section we consider an example network described
by the graph depicted in Fig. 1. This graph contains multiple
directed spanning trees. One of these is rooted at node 2,
as illustrated by bold arrows. In our design we shall use
K = 2, and it is therefore assumed that the other agents have
knowledge of the pair (A2,C2). The matrix Ḡ, obtained by
removing row and column number 2 from the Laplacian of
the network, has eigenvalues with real parts larger than ap-
proximately 0.33. We assume that the agents have knowledge
of a lower bound τ = 0.3. All the agents are of order 3, and
we assume that the agents have knowledge of a bound n∗= 3.

The model of agents 1 and 2 is given by

Ai =

0 1 0
0 0 1
0 −1 0

 , Bi =

0
0
1

 , Ci = I.

The model of agent 3, 4, and 5 is given by

Ai =

0 1 0
0 0 1
0 0 0

 , Bi =

0
0
1

 , Ci = I.

The model of agent 6, 7, and 8 is given by

Ai =

0 1 0
0 0 0
0 0 0

 , Bi =

0 0
1 0
0 1

 , Ci = I.

Finally, the model of agents 9 and 10 is given by

Ai =

 0 1 0
0 0 1
−1 −2 −3

 , Bi =

0
0
1

 , Ci =

 1
2 − 1

2 0
0 1

2 − 1
2

0 1
2

1
2

 .
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Fig. 2. Agent outputs for simulation example. The red lines show output
number 1, the green lines show output number 2, and the blue lines show
output number 3 for agents 1 through 10.

(We have Di = 0 for all the agents.) Note that none of the
agents are right-invertible. For illustrative purposes, we give
the details of the design process for agent 3.

When we compute O3 we find that q3 = 1 and r3 = 2,
and that we may choose the matrices Λ3u = [1,0,0, ]′ and
Φ3u = [1,0,0]′. Hence, one choice of Λ3 and Φ3 is

Λ3 = I, Φ3 =

1 0 −1
0 1 0
0 0 1

 .
The dynamics of x̄3 with output e3 then takes the form (4)
with

Ā312 =

0 0
0 0
0 0

 , Ā322 =

[
0 1
−1 0

]
, C̄32 =

0 −1
1 0
0 1

 .
We now attempt to solve the regulator equations (5), and find
that they are solvable with

Π3 =

0 −1
1 0
0 1

 , Γ3 =
[
−1 0

]
.

The observer for x̄3 is designed following the procedure
described in Section III-A with ε chosen as ε = 0.3, to
provide an estimate of the transformed state x̄3. We select the
matrix F3 = [−6,−11,−6] to place the poles of A3 +B3F3
at −1, −2, and −3, which results in the control law u3 =
[−6,−11,−6,10,0] ˆ̄x3. A similar procedure is carried out for
the other agents as well. The simulated outputs from all the
agents are shown in Fig. 2.

V. SOLVABILITY OF THE REGULATOR EQUATIONS

The above results should not be interpreted to mean that
right-invertibility plays no role in determining whether output
synchronization is achievable. In the following, we shall
show that solvability of the regulator equations (5) depends
fundamentally on the relationship between each agent’s non-
right-invertible dynamics and the pair (Āi22,C̄i2).

It is easy to see from (4) that the task of ensuring ei→ 0
is equivalent to regulating the output of a system

˙̄xi1 = Aix̄i1 + Āi12x̄i2 +Biui, ȳi1 =Cix̄i1 +Diui, (9)

†v

†b

yv

yb

uv

xb

Fig. 3. System partitioned into right-invertible and non-right-invertible
dynamics

to the output of an exosystem

˙̄xi2 = Āi22x̄i2, ȳi2 = C̄i2x̄i2. (10a)

Solvability of the regulator equations (5) is closely related to
the ability of (9) to reproduce the output from (10) for any
initial condition. In particular, solvability ensures that there
exists a state-feedback control law ui = Fix̄i1+(Γi−FiΠi)x̄i2
that achieves the regulation task. To see this, define a variable
x̃i = x̄i1−Πix̄i2, and note that by using the regulator equations
(5), we can write

˙̃xi = Aix̄i1 + Āi12x̄i2 +Biui−ΠiĀi22x̄i2

= Ai(x̄i1−Πix̄i2)+BiFi(x̄i1−Πix̄i2) = (Ai +BiFi)x̃i.

Thus, with Fi chosen such that Ai +BiFi is Hurwitz, x̃i→ 0.
Furthermore, we have

ei =Cix̄i1−C̄i2x̄i2 +Diui

=Ci(x̄i1−Πix̄i2)+DiFi(x̄i1−Πix̄i2) = (Ci +DiFi)x̃i,

and hence ei→ 0.

A. Right-Invertible and Non-Right-Invertible Dynamics

In order to study solvability conditions for the regulator
equations, we shall make use of a canonical form that sep-
arates a system into right-invertible and non-right-invertible
dynamics.1 Given an arbitrary linear time-invariant system

ẋ = Ax+Bu, y =Cx+Du,

there exist nonsingular state, input, and output transforma-
tions Ψx, Ψu, and Ψy such that, by defining x = Ψx[x′b,x

′
v]
′,

u = Ψuuv, and y = Ψy[y′b,y
′
v]
′, the system can be described

in terms of two subsystems:

Σb :

{
ẋb = Abxb +Lbvyv,

yb =Cbxb,
(11a)

Σv :

{
ẋv = Avxv +Bvuv +Evbxb,

yv =Cvxv +Dvuv +Hvbxb.
(11b)

Fig. 3 illustrates how these two subsystems are connected.
We see that Σb is not directly influenced by the input uv;

1The canonical form can be obtained by transforming the system to the
special coordinate basis [27] and combining the states xa, xc, and xd into
a single state xv; the inputs u0, uc and ud into a single input uv; and the
outputs y0 and yd into a single output yv.
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Fig. 4. System partitioned into right-invertible and non-right-invertible
dynamics

it is only indirectly influenced via the output yv from Σv.
Hence, yb is entirely dictated by yv together with the initial
condition xb(0).

The Σb subsystem is said to represent the system’s
non-right-invertible dynamics. To see why, note that right-
invertibility would require the ability of yb and yv to track
arbitrary reference signals ȳb(t) and ȳv(t) by the proper
choice of initial conditions and input uv. However, if yv(t) =
ȳv(t), then there is no freedom left in the input to Σb to ensure
that yb(t) = ȳb(t). Right-invertibility can therefore only occur
if xb is of dimension zero. On the other hand, it is a property
of the canonical form that (Av,Bv,Cv,Dv) is right-invertible;
thus, the system is right-invertible in the absence of Σb. The
Σv subsystem is therefore said to represent the right-invertible
dynamics. We also note that (Av,Bv,Cv,Dv) has the same
invariant zeros as (A,B,C,D) and that (Ab,Cb) is observable.

B. Non-Right-Invertible Dynamics and the Regulator Equa-
tions

Let us now turn to the problem regulating the output
of (9) to the output of (10). If we apply state, input, and
output transformations x̄i1 = Ψxi[x′bi,x

′
vi]
′, ui = Ψuiuvi, and

ȳi1 = Ψyi[y′bi,y
′
vi]
′ to the system (9) in order to bring it into

the canonical form, we obtain the system equations

Σbi :

{
ẋbi = Abixbi +Lbviyvi +Gbix̄i2,

ybi =Cbixbi,
(12a)

Σvi :

{
ẋvi = Avixvi +Bviuvi +Evbixbi +Gvix̄i2,

yvi =Cvixvi +Dviuvi +Hvbixbi,
(12b)

where the terms Gbix̄i2 and Gvix̄i2 are due to the term Āi12x̄i2
in (9). We denote by nbi and nvi the dimensions of the Σbi
and Σvi subsystems. Applying the same output transformation
ȳi2 = Ψyi[ȳ′bi, ȳ

′
vi]
′ to the exosystem (10), we can write it as

˙̄xi2 = Āi22x̄i2, ȳbi = C̄bix̄i2, ȳvi = C̄vix̄i2. (13)

The goal is now to ensure (ybi− ȳbi)→ 0 and (yvi− ȳvi)→ 0.

Fig. 4 shows how the systems (12) and (13) are inter-
connected. Analogous to our discussion in Section V-A, it
is evident that if yvi(t) = ȳvi(t), then there is no freedom
left to force ybi to track ȳbi(t). Thus, whether the regulation
problem can be solved depends inherently on the relationship
between the non-right-invertible dynamics and the dynamics
of the exosystem.

Theorem 2: Define Ōi as the observability matrix of the
pair ([

Abi LbviC̄vi +Gbi
0 Āi22

]
,
[
Cbi −C̄bi

])
.

A necessary condition for solvability of the regulator equa-
tions (5) is that rank Ōi = nbi. A sufficient condition for
solvability of the regulator equations (5) is that rank Ōi = nbi
and, additionally, that (A,B,C,D) has no invariant zeros
coinciding with the eigenvalues of Āi22.

Proof: We first prove the sufficiency part. Considering
the system equations in (12) and (13), we find that

Ψ
−1
xi AiΨxi =

[
Abi +LbviHvbi LbviCvi

Evbi Avi

]
,

Ψ
−1
xi BiΨui =

[
LbviDvi

Bvi

]
, Ψ

−1
yi CiΨxi =

[
Cbi 0
Hvbi Cvi

]
,

Ψ
−1
yi DiΨui=

[
0

Dvi

]
,Ψ−1

xi Āi12=

[
Gbi
Gvi

]
,Ψ−1

yi C̄i2=

[
C̄bi
C̄vi

]
.

Using these expressions, it is easy to verify that (5) is
equivalent to[

Πbi
Πvi

]
Āi22 =

[
Abi +LbviHvbi LbviCvi

Evbi Avi

][
Πbi
Πvi

]
+

[
Gbi
Gvi

]
+

[
LbviDvi

Bvi

]
Γvi, (14a)[

Cbi 0
Hvbi Cvi

][
Πbi
Πvi

]
−
[
C̄bi
C̄vi

]
+

[
0

Dvi

]
Γvi = 0, (14b)

with Πi = Ψxi[Π
′
bi,Π

′
vi]
′ and Γi = ΨuiΓvi. We can write

Ōi = [Ōi1, Ōi2], where Ōi1 = [C′bi, . . . ,(CbiA
nbi+ri−1
bi )′]′. Since

(Abi,Cbi) is observable, rank Ōi1 = nbi. Since rank Ōi = nbi,
we must have im Ōi2 ⊂ im Ōi = im Ōi1. Hence, there exists
a Πbi such that Ōi1Πbi + Ōi2 = 0, which means that [Π′bi, I]

′

is a basis for the (invariant) unobservable subspace of the
matrix pair in the theorem. It follows that there is a Vi such
that [

Abi LbviC̄vi +Gbi
0 Āi22

][
Πbi

I

]
=

[
Πbi

I

]
Vi, (15a)

[
Cbi −C̄bi

][Πbi
I

]
= 0. (15b)

It is obvious that we must have Vi = Āi22 for this to hold,
and it then follows that

ΠbiĀi22 = AbiΠbi +LbviC̄vi +Gbi. (16)

Consider now the regulator equations

ΠviĀi22 = AviΠvi +EvbiΠbi +Gvi +BviΓvi, (17a)
CviΠvi +HvbiΠbi−C̄vi +DviΓvi = 0, (17b)



where Πvi and Γvi are the unknowns. Because
(Avi,Bvi,Cvi,Dvi) is right-invertible, the Rosenbrock
system matrix

[
Avi−λ I Bvi

Cvi Dvi

]
has normal rank nvi + p (see [28,

Property 3.1.6]). Since no invariant zeros of (Avi,Bvi,Cvi,Dvi)
coincide with eigenvalues of Āi22, the matrix retains its
normal rank for all λ that are eigenvalues of Āi22. It
therefore follows that the regulator equations (17) are
solvable [29, Corollary 2.5.1]. From (17), we see that
C̄vi = CviΠvi +HvbiΠbi +DviΓvi. Inserting this into (16), we
have

ΠbiĀi22 = (Abi +LbviHvbi)Πbi +LbviCviΠvi

+LbviDviΓvi +Gbi.
(18)

Combining (17), (18), and the expression CbiΠbi− C̄bi = 0
from (15b), we see that Πbi, Πvi, and Γvi are solutions to
(14), and hence the regulator equations (5) are solvable.

To prove the necessity part, note that on the agreement
manifold, we must have yvi = ȳvi, which means that on this
manifold the difference between ybi and ȳbi is governed by

ẋbi = Abixbi +(LbviC̄vi +Gbi)x̄i2, ˙̄xi2 = Āi22x̄i2,

ybi− ȳbi =Cbixbi−C̄bix̄i2.

This dynamics corresponds precisely to the matrix pair in
the statement of the theorem. In order to have ybi− ȳbi = 0,
we must therefore have Ōi1xbi + Ōi2x̄i2 = 0. If rank Ōi >
rank Ōi1 = nbi, then this expression can only be satisfied for
x̄i2 in some subspace of dimension lower than ri, which
means that x̄i2 must converge to this subspace. However,
since the poles of Āi22 are all in the closed right-half plane,
there is no lower-dimensional subspace to which all solutions
converge, and hence we must have rank Ōi = nbi.

The following corollary follows immediately from Theo-
rem 2 and Proposition 1.

Corollary 1: The regulator equations (5) are always solv-
able if either (i) agent i is right-invertible and has no invariant
zeros coinciding with the poles of Āi22; or (ii) for each
initial condition xK(0) ∈RnK there exists an initial condition
xi(0) ∈ Rni such that, for ui = 0 and uK = 0, xi(t) = xK(t)
for all t ≥ 0.

VI. CONCLUDING REMARKS

In this paper we have shown that we can apply a previously
developed design methodology for output synchronization in
heterogeneous networks of non-introspective agents while
dispensing with the assumption of right-invertibility. As a
result, the class of networks for which output synchronization
can be achieved is significantly expanded.
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